
1. Sum of 8-bit Numbers Stored in Memory
ORG 00H

MOV R0,#50H ;get memory location in memory pointer R0

MOV R1,#51H ;get memory location on memory pointer register R1

MOV A,@R0 ;get content of memory location 50H to accumulator

ADD A,@R1 ;add content of A with content of memory location 51H and store
result in A

MOV R0,#52H ;get 52H to memory pointer R0

MOV@R0,A ;copy content of A to memory location 52H

END

2. Add 16-bit Numbers

ORG 00H

MOV DPTR,#2040H ; get 2040H into DPTR

MOV A,#2BH ;get lower byte of second 16-bit number on accumulator

MOV R0,#20H ;get higher byte of second 16-bit number on accumulator

ADD A,82H ;[A]+[DPL]

MOV 82H,A ;save result of lower byte addition

MOV A,R0 ;get higher byte of second number in A

ADDC A,83H ;[A]+[DPH]

MOV 83H,A ;Save result of higher byte addition

END

3. Add 16-bit Numbers

MOV R0,#34H //LOWER NIBBLE OF NO.1

MOV R1,#12H //HIGHER NIBBLE OF NO.1

MOV R2,#0DCH //LOWER NIBBLE OF NO.2

MOV R3,#0FEH //HIGHER NIBBLE OF NO.2

CLR C

MOV A,R0

ADD A,R2

MOV 22H,A

MOV A,R1

ADDC A,R3

MOV 21H,A

MOV 00H,C

END

4. Multiplication and Division

ORG 00H

MOV A,51H ;get content of memory location 51H to accumulator

MOV 0F0H,52H;get content of memory location 52H to B register

MUL AB ;multiply content of A with content of B

MOV 53H,A ;get lower order byte of product in memory location 53H

MOV 54H,0F0H ;get higher order byte of product in memory location in 54H

MOV A,51H ;get content of memory location 51H to accumulator

MOV 0F0H,52H ;get content of memory location 52H to register B

DIV AB ;divide content of register A with register B

MOV 55H,A ;Copy quotient of result to memory location 55H

MOV 56H,0F0H ;copy remainder of result to memory location 56H

END

5. Find Largest Number

 ORG 00H

 MOV DPTR,#2000H;initialize pointer to memory where numbers are stored

 MOV R0,#0AH ; initialize counter

 MOV R3,#00H ;maximum=0

AGAIN: MOV A,@DPTR ;get the number from memory

 CJNE A,R3,NE ;compare number wi maximum number

 AJMP SKIP ;if equal go to SKIP

 NE: JC SKIP ;if not equal check for carry, if carry go to skip

 MOV R3,A ;otherwise maximum=[[DPTR]]

 SKIP: INC DPTR ; Increment memory pointer

 DJNZ R0,AGAIN ; Decrement count, if count=0 stop otherwise go to AGAIN

 END

6. Exchange the content of FFh and FF00h

MOV DPTR, #FF00H ; TAKE THE ADDRESS IN DPTR

 MOVX A, @DPTR ; GET THE CONTENT OF FF0H IN A

 MOV R0, 0FFH ; SAVE THE CONTENT OF FFH IN R0

 MOV 0FFH, A ; MOVE A TO 50H

 MOV A, R0 ; GET CONTENT OF 50H IN A

 MOVX @DPTR, A ; MOVE IT TO 0050H

7. Transfer the block of data from 20h to 30h to external location 1020h to 1030h.
MOV R7, #0AH ; INITIALIZE COUNTER BY 10D

 MOV R0, #20H ; GET INITIAL SOURCE LOCATION

 MOV DPTR, #1020H ; GET INITIAL DESTINATION LOCATION

 NXT: MOV A, @R0 ; GET FIRST CONTENT IN ACC

 MOVX @DPTR, A ; MOVE IT TO EXTERNAL LOCATION

 INC R0 ; INCREMENT SOURCE LOCATION

 INC DPTR ; INCREASE DESTINATION LOCATION

DJNZ R7, NXT ; DECREASE R7. IF ZERO THEN OVER OTHERWISE MOVE
NEXT

8. Write an 8051 program to copy a block of 10 bytes of data from
RAM locations starting at 35h to RAM locations starting at 60h.

MOV R0, #35h ; Source pointer

MOV R1, #60h ; destination pointer

MOV R3, #0Ah ; counter

BACK: MOV A,@R0

MOV @R1, A

INC R0

INC R1

DJNZ R3, BACK

HERE: SJMP HERE

END

9. Write a program to check if the character string of length 7, stored in RAM locations
50H onwards is a Palindrome. If it is, output ‘Y’ to P1.

Solution:

A Palindrome is a string in which the characters are the same whether the string is
read in the forward or backward direction. Example, ‘MADAM’, ‘RADAR’.

MOV R2, #03 ; take half the string length as counter value

MOV R0, #50H ; take R0 as pointer to the forward reading

MOV R1, #56H ; take R1 as pointer for the backward reading Of the string

Back: MOV A, @R0 ; move into A the character pointed by R0

MOV B, @R1 ; move into B the character pointed by R1 24

CJNE A, B, NEXT ;compare it with the character pointed by R1

INC R0 ; increment the forward counter

DEC R1 ; decrement the backward counter

DJNZ R2, BACK ; repeat until all characters are compared

MOV P1, #’Y’ ; since the string is a Palindrome output ‘Y’

NEXT: NOP ; if not equal, do nothing since it is not a Palindrome

END

10. W rite the sequence of 8051 instructions to store any two numbers at two consecutive
locations 70H and 71H, multiply them and store the result in location 72H.

MOV R0, #70H;set source address 20H to R0

 MOV R1, #72H;set destination address 30H to R1

 MOV A, @R0;take the first operand from source to register A

 INC R0; Point to the next location

 MOV B, @R0 ;take the second operand from source to register B

 MUL A B ;Multiply A and B

 MOV @R1, B; Store higher order byte to 30H

 INC R1; Increase R1 to point to the next location

 MOV @R1, A ;Store lower order byte to 31H

HALT: SJMP HALT ; Stop the program

11. Write an 8051 program to count the number of 1s in the binary representation of a given
number.
MOV DPTR,#9000H ;LOAD DPTR WITH 9000H

MOVX A,@DPTR ;MOVE DATA FROM EXTERNAL MEMORY LOCATION TO A

MOV R0,#0H ;LOAD R0 WITH 0

MOV R1,#8H ;LOAD R1 WITH 8

CLR C ;CLEAR CARRY BIT

UP:RLC A ;ROTATE A LEFT THROUGH CARRY

JNC NEXT ;IF NO CARRY, JUMP TO LABEL NEXT

INC R0 ;INCREMENT R0

NEXT:DJNZ R1,UP ;DECREMENT R1, AND JUMP TO LABEL NEXT, IF R1≠0

INC DPTR ;INCREMENT DPTR

MOV A,R0 ;MOVE DATA FROM R0 TO A

MOVX @DPTR,A ;MOVE DATA FROM A TO EXTERNAL MEMORY LOCATION

HERE:SJMP HERE

END

12. Write an assembly language program to sort an array of N =____ h bytes of data in

ascending/descending order stored from location 9000h. (Using bubble sort algorithm)
LET N = 06H

 MOV R0,#05H //COUNT (N-1) ARRAY SIZE = N

LOOP1: MOV DPTR, #9000H //ARRAY STORED FROM ADDRESS 9000H

 MOV R1,#05H //INITIALIZE EXCHANGE COUNTER

 LOOP2: MOVX A, @DPTR //GET NUMBER FROM ARRAY AND STORE IN
REGISTER

 MOV B, A

 INC DPTR

 MOVX A, @DPTR //NEXT NUMBER IN THE ARRAY

 CLR C //RESET BORROW FLAG

 MOV R2, A //STORE IN R2

 SUBB A, B //2ND-1 ST NO, SINCE NO COMPARE INSTRUCTION IN 8051

 JNC NOEXCHG // JC - FOR DESCENDING ORDER

 MOV A,B //EXCHANGE THE 2 NOS IN THE ARRAY

 MOVX @DPTR,A

 DEC DPL //DEC DPTR - INSTRUCTION NOT PRESENT

 MOV A,R2

 MOVX @DPTR,A

 INC DPTR

NOEXCHG: DJNZ R1,LOOP2 //DECREMENT COMPARE COUNTER

 DJNZ R0,LOOP1 //DECREMENT PASS COUNTER

 END

WRITE AN ASSEMBLY LANGUAGE PROGRAM TO FIND THE SQUARE OF A
GIVEN NUMBER N.

LET N = 05

MOV A,#05 // A=N=05

MOV B,A

MUL AB

MOV 30H,A // RESULT IS STORED IN 30H AND 31H

MOV 31H,B

END

13. Write an assembly language program to count number of ones and zeros in a eight bit
number.

MOV R1,#00H // TO COUNT NUMBER OF 0S

MOV R2,#00H // TO COUNT NUMBER OF 1S

MOV R7,#08H // COUNTER FOR 8-BITS

MOV A,#97H // DATA TO COUNT NUMBER OF 1S AND 0S

AGAIN: RLC A

JC NEXT

INC R1

SJMP HERE

NEXT: INC R2

HERE: DJNZ R7,AGAIN

END

14. Write an ALP to compare two eight bit numbers NUM1 and NUM2 stored in external
memory locations 8000h and 8001h respectively. Reflect your result as: If
NUM1<NUM2, SET LSB of data RAM location 2FH (bitaddress 78H). If
NUM1>NUM2, SET MSB of location 2FH (bit address7FH). If NUM1 = NUM2, then
Clear both LSB & MSB of bit addressable memory location 2FH.

MOV DPTR,#8000H

MOVX A,@DPTR

MOV R0,A

INC DPTR

MOVX A,@DPTR

CLR C

SUB A,R0

JZ EQUAL

JNC SMALL

SETB 7FH

SJMP END1

SMALL: SETB 78H

SJMP END1

 EQUAL: CLR 78H

CLR 7FH

 END1:

END

15. Write an assembly language program to perform logical operations AND, OR, XOR on
two eight bit numbers stored in internal RAM locations 21h, 22h.

MOV A, 21H //DO NOT USE #, AS DATA RAM 21H IS TO BE ACCESSED

ANL A, 22H //LOGICAL AND OPERATION

MOV 30H, A //AND OPERATION RESULT STORED IN 30H

MOV A, 21H

ORL A,22H //LOGICAL OR OPERATION

MOV 31H, A //OR OPERATION RESULT STORED IN 31H

MOV A,21H

XRL A,22H //LOGICAL XOR OPERATION

MOV 32H,A // XOR OPERATION RESULT STORED IN 32H

 END

